Distinct roles of nitric oxide synthases and interstitial cells of Cajal in rectoanal relaxation.

نویسندگان

  • Akiko Terauchi
  • Daisuke Kobayashi
  • Hiroshi Mashimo
چکیده

Nitric oxide (NO) relaxes the internal anal sphincter (IAS), but its enzymatic source(s) remains unknown; neuronal (nNOS) and endothelial (eNOS) NO synthase (NOS) isoforms could be involved. Also, interstitial cells of Cajal (ICC) may be involved in IAS relaxation. We studied the relative roles of nNOS, eNOS, and c-Kit-expressing ICC for IAS relaxation using genetic murine models. The basal IAS tone and the rectoanal inhibitory reflex (RAIR) were assessed in vivo by a purpose-built solid-state manometric probe and by using wild-type, nNOS-deficient (nNOS-/-), eNOS-deficient (eNOS-/-), and W/W(v) mice (lacking certain c-Kit-expressing ICC) with or without L-arginine or N(omega)-nitro-L-arginine methyl ester (L-NAME) treatment. Moreover, the basal tone and response to electrical field stimulation (EFS) were studied in organ bath using wild-type and mutant IAS. In vivo, the basal tone of eNOS-/- was higher and W/W(v) was lower than wild-type and nNOS-/- mice. L-arginine administered rectally, but not intravenously, decreased the basal tone in wild-type, nNOS-/-, and W/W(v) mice. However, neither L-arginine nor L-NAME affected basal tone in eNOS-/- mice. In vitro, L-arginine decreased basal tone in wild-type and nNOS-/- IAS but not in eNOS-/- or wild-type IAS without mucosa. The in vivo RAIR was intact in wild-type, eNOS-/-, and W/W(v) mice but absent in all nNOS-/- mice. EFS-induced IAS relaxation was also reduced in nNOS-/- IAS. Thus the basal IAS tone is largely controlled by eNOS in the mucosa, whereas the RAIR is controlled by nNOS. c-Kit-expressing ICC may not be essential for the RAIR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interstitial cells of Cajal are involved in the afferent limb of the rectoanal inhibitory reflex.

BACKGROUND AND AIMS Interstitial cells of Cajal (ICC) have been shown to be involved in nitrergic neurotransmission of the lower oesophageal sphincter and pylorus. Here we studied the role of ICC and nitric oxide (NO) in the inhibitory neurotransmission of the murine internal anal sphincter (IAS). METHODS The rectoanal inhibitory reflex, rectal compliance, and relaxation of the isolated IAS t...

متن کامل

COLONIC MOTILITY Interstitial cells of Cajal are involved in the afferent limb of the rectoanal inhibitory reflex

Background and aims: Interstitial cells of Cajal (ICC) have been shown to be involved in nitrergic neurotransmission of the lower oesophageal sphincter and pylorus. Here we studied the role of ICC and nitric oxide (NO) in the inhibitory neurotransmission of the murine internal anal sphincter (IAS). Methods: The rectoanal inhibitory reflex, rectal compliance, and relaxation of the isolated IAS t...

متن کامل

Nitrergic relaxation of gastrointestinal smooth muscle: role of interstitial cells of Cajal and smooth muscle cells

Background The signaling molecule nitric oxide (NO) is known to activate the enzyme NO-sensitive guanylyl cyclase (NOGC). By generation of the intracellular second messenger cGMP NO-GC regulates many physiological processes. In the gastrointestinal (GI) tract nitrergic neurons are part of the enteric nervous system which regulates GI motility. In addition, interstitial cells of Cajal (ICC) are ...

متن کامل

Nitric oxide and the bioactivities

Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...

متن کامل

Interstitial cells of Cajal and adaptive relaxation in the mouse stomach.

Interstitial cells of Cajal (ICC) are proposed to play a role in stretch activation of nerves and are under intense investigation for potential roles in enteric innervation. Most data to support such roles come from in vitro studies with muscle strips whereas data at the whole organ level are scarce. To obtain insight into the role of ICC in distention-induced motor patterns developing at the o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 289 2  شماره 

صفحات  -

تاریخ انتشار 2005